Contador de post e comentários

sexta-feira, 25 de janeiro de 2019

Resenha: A criança e o numero



KAMII, Constance. A Criança e o Numero: implicações da teoria de Piaget para a atuação junto a escolares de 4 a 6 anos. Campinas, SP: Papirus, 1990.
Neste livro, Kamii busca justificar sua metodologia para a construção da ideia de número pela via da contagem, apresentando uma série de experimentos realizados com crianças de diferentes faixas etárias, segundo os resultados das pesquisas desenvolvidas por Jean Piaget, orientador e referencial teórico da autora. Os assuntos abordados na leitura inicial dão conta de como a criança compreende a construção do número. Segundo a autora a internalização do conceito de numero depende do nível mental que Jean Piaget (1998) nomeia de reversibilidade. Reversibilidade é a capacidade de fazer, desfazer mentalmente a mesma operação. Para ele a criança não pode conceituar adequadamente o número até que seja capaz de conservar quantidades, tornar reversíveis as operações, classificar e seriar. Assim, o educando (a) constrói, no seu intelecto, a noção de número.
A autora começa mostrando em seu livro dois tipos de conhecimento concebidos por Piaget, o conhecimento físico (conhecimento da realidade externa) que pode ser conhecido pela observação, e o Lógico-Matemático, que é a diferença existente na relação entre dois objetos. Sendo assim, o numero se torna a relação criada mentalmente por cada indivíduo. Assim, o educando (a) constrói, no seu intelecto, a noção de número fazendo-se necessário desenvolver certas habilidades, desse modo, a observação exerce um significado importante na aprendizagem.
No livro também estão colocadas algumas das questões cruciais que desafiam especialistas, professores e pais em relação à aquisição e ao uso do conceito de número pelas crianças de 4 a 7 anos. A criança nessa faixa etária é capaz de desenvolver várias habilidades necessárias a construção da noção de número, como por exemplo: observar, contar, calcular, classificar, seriar. A partir dessas capacidades ela poderá ter condições de construir a inclusão hierárquica, que em síntese com a ordem dos números, poderá construir o numero, conseguindo realizar atividades que demonstrem as quantidades. Kamii afirma que, se as crianças conseguem construir os pequenos números elementares ao colocarem todos os tipos de coisas em todos os tipos de relações, elas devem persistir ativamente neste pensamento para complementar a estruturação do resto da série.
Através de uma figura (dois círculos ligados um ao outro) a autora mostra que o sucesso escolar depende muito da habilidade de pensar autônomo e criticamente. A intersecção dos círculos mostra as coisas que aprendemos na escola e que foram úteis para o desenvolvimento da autonomia, por exemplo, a habilidade de ler e escrever, de ler mapas etc. Para Kamii, “se a autonomia é a finalidade da educação, precisam ser feitas tentativas no sentido de aumentar a área intersecção entre os dois círculos”.
Também coloca a autonomia em uma perspectiva de vida em grupo. Para ela, a autonomia significa o indivíduo ser governado por si próprio. É o contrário de heteronomia, que significa ser governado pelos outros. A autonomia significa levar em consideração os fatores relevantes para decidir agir da melhor forma para todos. Não pode haver moralidade quando se considera apenas o próprio ponto de vista. Assim o objetivo para ensinar o numero é o da construção que a criança faz da estrutura mental do numero, e o professor, deve priorizar o ato de encorajar a criança a pensar ativa e autonomamente em todos os tipos de situações. Para Kamii, uma criança que pensa ativamente à sua maneira, incluindo quantidades, inevitavelmente, constrói o numero.
Kamii afirma em seu livro que o meio ambiente proporciona muitas coisas que indiretamente, facilitam o desenvolvimento do raciocínio lógico-matemático. E “as crianças de culturas mais industrializadas geralmente desenvolvem-se mais rapidamente do que as de cultura menos industrializadas”. E ainda “as crianças de nível sócio-econômico médio-alto desenvolvem-se mais rapidamente do que as de baixa renda, e as que vivem na cidade, mais rápido que as das zona rurais”. ela elaborou também, seis princípios de ensino sob três títulos:
  1. A criação de todos os tipos de relações
Encorajar a criança a estar alerta e colocar todos os tipos de objetos, eventos e ações em todas as espécies de relações.
  1. A quantificação dos objetos
a. Encorajar as crianças a pensarem sobre numero e quantidades de objetos quando estes seriam significativos para elas.
b. Encorajar a criança a quantificar objetos logicamente e a comparar conjuntos (em vez de encorajá-las a contar).
c. Encorajar a criança a fazer conjunto com objetos móveis.
  1. Interação social com os colegas e os professores.
a. Encorajar a criança a trocar ideias com seus colegas.
b. Imaginar como é que a criança está pensando, e intervir de acordo com aquilo que pareça estar sucedendo em sua cabeça.
O conhecimento matemático deve ser apresentado aos alunos como historicamente construído e em permanente evolução. Os recursos didáticos como jogos, livros, calculadoras, computadores e outros materiais têm um papel importante no processo de aprendizagem. A autora mostra ainda, a aplicação de jogos no auxílio à aprendizagem e fixação dos conceitos matemáticos tem por objetivo fazer com que o educando aprenda e construa os conceitos matemáticos através dos jogos.
O jogo e a brincadeira fazem parte da vida de qualquer indivíduo. O encantamento, fascínio e fantasia dos brinquedos e jogos acompanham o desenvolvimento da humanidade. Com relação ao jogo como recurso para auxiliar a aprendizagem, Kamii traz que a criança precisa ser encorajada na troca de ideias sobre como querem jogar, e ainda mostra diversos modelos de jogos e brincadeiras que podem ser bem aproveitados na aprendizagem da criança: dança das cadeiras, jogos com tabuleiro, jogos de baralho, jogos com bolinhas de gude, jogos da memória etc.
“Os jogos são atividades tão prazerosas e interessantes, por que não os trazer para a sala de aula e, assim, substituir as antigas atividades em folhas intermináveis que tornavam a aprendizagem um tédio? Trazendo o jogo para dentro da sala de aula, estaremos tornando a educação mais compatível com o desenvolvimento natural das crianças, ou seja, contribuiremos, para que a aprendizagem escolar seja relevante para o desenvolvimento.” (Constance Kamii).
Trabalhar com jogos é muito interessante e gratificante, pois o aluno aprende brincando dentro da sala. Mas é preciso que o educador tenha consciência que trabalhar assim não é fácil, exige uma atenção maior sobre os alunos para identificar o que precisa ser trabalhado e escolher o jogo certo para cada conceito matemático. Não se pode esquecer, que para tal trabalho, deve ser questionado: por que, quando, para que, o que se pretende, para que aulas não fiquem apenas no jogar por jogar.
O que levo de mais importante no livro é a colocação de que segundo Piaget a criança não constrói o número pela transmissão social, ou seja, aprendendo a contar. A estrutura lógico-matemática do número não pode ser ensinada, ela é construída pela própria criança, através do estímulo do professor proporcionando o desenvolvimento dessa estrutura mental através de situações de relações diversas. A tarefa dos professores é de incentivar o pensamento espontâneo das crianças e não apenas buscar respostas prontas. Aprender a contar, ler e escrever numerais é importante, mas se a criança não tiver construindo sua estrutura de número esta contagem, leitura e escrita será apenas memorização, sem sentido numérico. Também achei muito importante o resultado de uma pesquisa que indica que as crianças de nível sócio econômico mais elevado, desenvolvem o raciocínio lógico matemático mais rapidamente que os de baixa renda, isso influencia bastante na minha sala de aula, visto que trabalho com crianças de nível sócio-econômicos muito variados e com pouquíssimos estímulos familiares, retardando bastante esse desenvolvimento do pensamento lógico, não só na questão numérica inclusive na leitura e escrita


Nenhum comentário:

Postar um comentário